RFID (Radio Frequency Identification) is a technology that uses electromagnetic fields to identify objects in a contactless way; it is also called proximity identification. There are 2 elements in RFID communications: the RFID module (or reader/writer device) and an RFID card (or tag). The RFID module acts as the master and the card acts as the slave; this means the module queries the card and sends instructions to it. In a normal RFID communication, the RFID module is fixed and the user takes his card near it when he needs to start the interaction.
Ingredients:
Preparation Time: 20 minutes
Cooking Hacks offers Mifare® Classic 1k cards tags, stickers and key rings along with the RFID/NFC module for Arduino and Raspberry Pi. A Mifare® Classic 1k tag has 1024 bytes of internal storage capacity, divided into 16 sectors. Each sector is composed of 4 blocks, and each block is composed of 16 bytes. That is to say, each card has 64 blocks, from number 0 to 63. Blocks number 3, 7, 11 is called the sector trailer. This block stores the 2 keys or passwords and controls the access to the rest of the blocks in the sector.
Setting up the hardware is very easy, just plug the XBee shield with the RFID/NFC module to Arduino. The jumpers in the XBee shield have to be set to XBEE position. See the picture.
Now you can program the Arduino and communicate it with the RFID/NFC module using the serial port (Serial.read(), Serial.print()...). Remember you must unplug the XBee shield when uploading code to Arduino.
Connect the RFID module to Raspberry Pi using the Raspberry Pi to Arduino shields connection bridge as shown in the picture.
In this part we show an example of the Arduino reading Mifare tags. We use the Auto Read mode. Arduino is waiting all the time, when a tag is detected, we read its code, and print the code over USB port.
Arduino:
/* * RFID 13.56 MHz / NFC Module * * Copyright (C) Libelium Comunicaciones Distribuidas S.L. * http://www.libelium.com * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * a * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see http://www.gnu.org/licenses/. * * Version: 1.0 * Design: David Gascón * Implementation: Ahmad Saad & Javier Solobera */ uint8_t dataRX[35];//Receive buffer. uint8_t dataTX[35];//Transmit buffer. uint8_t _UID[4];// stores the UID (unique identifier) of a card. uint8_t keyAccess[] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF } ;// stores the key or password. uint8_t address = 0x04;//Address to read. uint8_t ATQ[2];//Answer to request uint8_t state;//state of the process uint8_t aux[16];//Auxiliar buffer. void setup() { //Start serial port 115200 bps: Serial.begin(115200); delay(100); Serial.print("RFID/NFC @ 13.56 MHz module started"); delay(1000); //!It is needed to launch a simple command to sycnchronize getFirmware(); configureSAM(); } void loop() { Serial.print("\n"); Serial.println("Ready to read..."); ///////////////////////////////////////////////////////////// //Get the UID Identifier init(_UID, ATQ); Serial.print("\n"); Serial.print( "The UID : "); print(_UID , 4); ///////////////////////////////////////////////////////////// //Auntenticate a block with his keyAccess state = authenticate(_UID, address, keyAccess); Serial.print("\n"); if ( state == 0) { Serial.println("Authentication block OK"); } else { Serial.println("Authentication failed"); } ///////////////////////////////////////////////////////////// //Read from address after authentication state = readData(address, aux); Serial.print("\n"); if (state == 0) { Serial.println("Read block OK"); } else { Serial.println("Read failed"); } Serial.print("\n"); Serial.print("Data readed : "); print(aux , 16); Serial.print("\n"); delay(2000); } //********************************************************************** //!The goal of this command is to detect as many targets (maximum MaxTg) // as possible in passive mode. uint8_t init(uint8_t *UID , uint8_t *ATQ) //! Request InListPassive { Serial.flush(); dataTX[0] = 0x04; // Length lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; dataTX[3] = 0x4A; // Code dataTX[4] = 0x01; //MaxTarget dataTX[5] = 0x00; //BaudRate = 106Kbps dataTX[6] = 0x00; // Clear checkSum position checkSum(dataTX); sendTX(dataTX , 7 ,23); for (int i = 17; i < (21) ; i++){ _UID[i-17] = dataRX[i]; UID[i-17] = _UID[i-17]; } ATQ[0] = dataRX[13]; ATQ[1] = dataRX[14]; if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x4B) & (dataRX[11] == 0x01)) { return 0; } else { return 1; } } //********************************************************************** //!A block must be authenticated before read and write operations uint8_t authenticate(uint8_t *UID, uint8_t blockAddress, uint8_t *keyAccess) { dataTX[0] = 0x0F; lengthCheckSum(dataTX); dataTX[2] = 0xD4; dataTX[3] = 0x40; // inDataEchange dataTX[4] = 0x01; //Number of targets dataTX[5] = 0x60; // Authentication code dataTX[6] = blockAddress; for (int i = 0; i < 6 ; i++) { dataTX[i + 7] = keyAccess[i]; } dataTX[13] = UID[0]; dataTX[14] = UID[1]; dataTX[15] = UID[2]; dataTX[16] = UID[3]; dataTX[17] = 0x00; checkSum(dataTX); sendTX(dataTX , 18 ,14); if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x41) & (dataRX[11] == 0x00)) { return 0; } else { return 1; } } //********************************************************************** //!Write 16 bytes in address . uint8_t writeData(uint8_t address, uint8_t *blockData) //!Writing { Serial.print(" "); dataTX[0] = 0x15; lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; dataTX[3] = 0x40;//inDataEchange CODE dataTX[4] = 0x01;//Number of targets dataTX[5] = 0xA0;//Write Command dataTX[6] = address; //Address for (int i = 0; i < 16; i++) { dataTX[i+7] = blockData[i]; } dataTX[23] = 0x00; checkSum(dataTX); sendTX(dataTX , 24 ,14); if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x41) & (dataRX[11] == 0x00)) { return 0; } else { return 1; } } //********************************************************************** //!Read 16 bytes from address . uint8_t readData(uint8_t address, uint8_t *readData) //!Reading { Serial.print(" "); dataTX[0] = 0x05; lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; // Code dataTX[3] = 0x40; // Code dataTX[4] = 0x01; // Number of targets dataTX[5] = 0x30; //ReadCode dataTX[6] = address; //Read address dataTX[7] = 0x00; checkSum(dataTX); sendTX(dataTX , 8, 30); memset(readData, 0x00, 16); if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x41) & (dataRX[11] == 0x00)) { for (int i = 12; i < 28; i++) { readData[i-12] = dataRX[i]; } return 0; } else { return 1; } } //********************************************************************** //!The PN532 sends back the version of the embedded firmware. bool getFirmware(void) //! It is needed to launch a simple command to sycnchronize { Serial.print(" "); memset(dataTX, 0x00, 35); dataTX[0] = 0x02; // Length lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; // CODE dataTX[3] = 0x02; //TFI checkSum(dataTX); //0x2A; //Checksum sendTX(dataTX , 5 , 17); Serial.print("\n"); Serial.print("Your Firmware version is : "); for (int i = 11; i < (15) ; i++){ Serial.print(dataRX[i], HEX); Serial.print(" "); } Serial.print("\n"); } //********************************************************************** //!Print data stored in vectors . void print(uint8_t * _data, uint8_t length) { for (int i = 0; i < length ; i++){ Serial.print(_data[i], HEX); Serial.print(" "); } Serial.print("\n"); } //********************************************************************** //!This command is used to set internal parameters of the PN532, bool configureSAM(void)//! Configure the SAM { Serial.print(" "); dataTX[0] = 0x05; //Length lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; dataTX[3] = 0x14; dataTX[4] = 0x01; // Normal mode dataTX[5] = 0x14; // TimeOUT dataTX[6] = 0x00; // IRQ dataTX[7] = 0x00; // Clean checkSum position checkSum(dataTX); sendTX(dataTX , 8, 13); } //********************************************************************** //!Send data stored in dataTX void sendTX(uint8_t *dataTX, uint8_t length, uint8_t outLength) { Serial.print(char(0x00)); Serial.print(char(0x00)); Serial.print(char(0xFF)); for (int i = 0; i < length; i++) { Serial.print(char(dataTX[i])); } Serial.print(char(0x00)); getACK(); waitResponse();// Receive response getData(outLength); } //********************************************************************** //!Wait for ACK response and stores it in the dataRX buffer void getACK(void) { delay(5); waitResponse(); for (int i = 0; i < 5 ; i++) { dataRX[i] = Serial.read(); } } //********************************************************************** //!Wait the response of the module void waitResponse(void) { int val = 0xFF; int cont = 0x00; while(val != 0x00) { //Wait for 0x00 response val = Serial.read(); delay(5); cont ++; } } //********************************************************************** //!Get data from the module void getData(uint8_t outLength) { for (int i=5; i < outLength; i++) { dataRX[i] = Serial.read();//read data from the module. } } //********************************************************************** //!Calculates the checksum and stores it in dataTX buffer void checkSum(uint8_t *dataTX) { for (int i = 0; i < dataTX[0] ; i++) { dataTX[dataTX[0] + 2] += dataTX[i + 2]; } byte(dataTX[dataTX[0] + 2]= - dataTX[dataTX[0] + 2]); } //********************************************************************** //!Calculates the length checksum and sotres it in the buffer. uint8_t lengthCheckSum(uint8_t *dataTX) { dataTX[1] = byte(0x100 - dataTX[0]); }
Raspberry Pi:
/* * RFID 13.56 MHz / NFC Module * * Copyright (C) Libelium Comunicaciones Distribuidas S.L. * http://www.libelium.com * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * a * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see http://www.gnu.org/licenses/. * * Version: 1.0 * Design: David Gascón * Implementation: Ahmad Saad & Javier Solobera */ //Include ArduPi library #include "arduPi.h" uint8_t init(uint8_t *UID , uint8_t *ATQ); uint8_t authenticate(uint8_t *UID, uint8_t blockAddress, uint8_t *keyAccess); uint8_t writeData(uint8_t address, uint8_t *blockData); uint8_t readData(uint8_t address, uint8_t *readData); bool getFirmware(void); void print(uint8_t * _data, uint8_t length); bool configureSAM(void); void sendTX(uint8_t *dataTX, uint8_t length, uint8_t outLength); void getACK(void); void waitResponse(void); void getData(uint8_t outLength); void checkSum(uint8_t *dataTX); uint8_t lengthCheckSum(uint8_t *dataTX); uint8_t dataRX[35];//Receive buffer. uint8_t dataTX[35];//Transmit buffer. uint8_t _UID[4];// stores the UID (unique identifier) of a card. uint8_t keyAccess[] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF } ;// stores the key or password. uint8_t address = 0x04;//Address to read. uint8_t ATQ[2];//Answer to request uint8_t state;//state of the process uint8_t aux[16];//Auxiliar buffer. void setup() { //Start serial port 115200 bps: Serial.begin(115200); delay(100); printf("RFID/NFC @ 13.56 MHz module started\n"); delay(1000); //!It is needed to launch a simple command to sycnchronize getFirmware(); configureSAM(); } void loop() { printf("Ready to read...\n"); ///////////////////////////////////////////////////////////// //Get the UID Identifier init(_UID, ATQ); printf("The UID : "); print(_UID , 4); ///////////////////////////////////////////////////////////// //Auntenticate a block with his keyAccess state = authenticate(_UID, address, keyAccess); printf("\n"); if ( state == 0) { printf("Authentication block OK\n"); } else { printf("Authentication failed\n"); } ///////////////////////////////////////////////////////////// //Read from address after authentication state = readData(address, aux); if (state == 0) { printf("Read block OK\n"); } else { printf("Read failed\n"); } printf("Data read: \n"); print(aux , 16); printf("\n\n"); delay(1000); } //********************************************************************** //!The goal of this command is to detect as many targets (maximum MaxTg) // as possible in passive mode. uint8_t init(uint8_t *UID , uint8_t *ATQ) //! Request InListPassive { Serial.flush(); dataTX[0] = 0x04; // Length lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; dataTX[3] = 0x4A; // Code dataTX[4] = 0x01; //MaxTarget dataTX[5] = 0x00; //BaudRate = 106Kbps dataTX[6] = 0x00; // Clear checkSum position checkSum(dataTX); sendTX(dataTX , 7 ,23); for (int i = 17; i < (21) ; i++){ _UID[i-17] = dataRX[i]; UID[i-17] = _UID[i-17]; } ATQ[0] = dataRX[13]; ATQ[1] = dataRX[14]; if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x4B) & (dataRX[11] == 0x01)) { return 0; } else { return 1; } } //********************************************************************** //!A block must be authenticated before read and write operations uint8_t authenticate(uint8_t *UID, uint8_t blockAddress, uint8_t *keyAccess) { dataTX[0] = 0x0F; lengthCheckSum(dataTX); dataTX[2] = 0xD4; dataTX[3] = 0x40; // inDataEchange dataTX[4] = 0x01; //Number of targets dataTX[5] = 0x60; // Authentication code dataTX[6] = blockAddress; for (int i = 0; i < 6 ; i++) { dataTX[i + 7] = keyAccess[i]; } dataTX[13] = UID[0]; dataTX[14] = UID[1]; dataTX[15] = UID[2]; dataTX[16] = UID[3]; dataTX[17] = 0x00; checkSum(dataTX); sendTX(dataTX , 18 ,14); if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x41) & (dataRX[11] == 0x00)) { return 0; } else { return 1; } } //********************************************************************** //!Write 16 bytes in address . uint8_t writeData(uint8_t address, uint8_t *blockData) //!Writing { Serial.print(" "); dataTX[0] = 0x15; lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; dataTX[3] = 0x40;//inDataEchange CODE dataTX[4] = 0x01;//Number of targets dataTX[5] = 0xA0;//Write Command dataTX[6] = address; //Address for (int i = 0; i < 16; i++) { dataTX[i+7] = blockData[i]; } dataTX[23] = 0x00; checkSum(dataTX); sendTX(dataTX , 24 ,14); if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x41) & (dataRX[11] == 0x00)) { return 0; } else { return 1; } } //********************************************************************** //!Read 16 bytes from address . uint8_t readData(uint8_t address, uint8_t *readData) //!Reading { Serial.print(" "); dataTX[0] = 0x05; lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; // Code dataTX[3] = 0x40; // Code dataTX[4] = 0x01; // Number of targets dataTX[5] = 0x30; //ReadCode dataTX[6] = address; //Read address dataTX[7] = 0x00; checkSum(dataTX); sendTX(dataTX , 8, 30); memset(readData, 0x00, 16); if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x41) & (dataRX[11] == 0x00)) { for (int i = 12; i < 28; i++) { readData[i-12] = dataRX[i]; } return 0; } else { return 1; } } //********************************************************************** //!The PN532 sends back the version of the embedded firmware. bool getFirmware(void) //! It is needed to launch a simple command to sycnchronize { Serial.print(" "); memset(dataTX, 0x00, 35); dataTX[0] = 0x02; // Length lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; // CODE dataTX[3] = 0x02; //TFI checkSum(dataTX); //0x2A; //Checksum sendTX(dataTX , 5 , 17); printf("\nYour Firmware version is : "); for (int i = 11; i < (15) ; i++){ printf("%x",dataRX[i]); printf(" "); } printf("\n"); } //********************************************************************** //!Print data stored in vectors . void print(uint8_t * _data, uint8_t length) { for (int i = 0; i < length ; i++){ printf("%x",_data[i]); printf(" "); } printf("\n"); } //********************************************************************** //!This command is used to set internal parameters of the PN532, bool configureSAM(void)//! Configure the SAM { Serial.print(" "); dataTX[0] = 0x05; //Length lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; dataTX[3] = 0x14; dataTX[4] = 0x01; // Normal mode dataTX[5] = 0x14; // TimeOUT dataTX[6] = 0x00; // IRQ dataTX[7] = 0x00; // Clean checkSum position checkSum(dataTX); sendTX(dataTX , 8, 13); } //********************************************************************** //!Send data stored in dataTX void sendTX(uint8_t *dataTX, uint8_t length, uint8_t outLength) { Serial.print(0x00, BYTE); Serial.print(0x00, BYTE); Serial.print(0xFF, BYTE); for (int i = 0; i < length; i++) { Serial.print(dataTX[i], BYTE); } Serial.print(0x00, BYTE); getACK(); waitResponse();// Receive response getData(outLength); } //********************************************************************** //!Wait for ACK response and stores it in the dataRX buffer void getACK(void) { delay(5); waitResponse(); for (int i = 0; i < 5 ; i++) { dataRX[i] = Serial.read(); } } //********************************************************************** //!Wait the response of the module void waitResponse(void) { int val = 0xFF; int cont = 0x00; while(val != 0x00) { //Wait for 0x00 response val = Serial.read(); delay(5); cont ++; } } //********************************************************************** //!Get data from the module void getData(uint8_t outLength) { for (int i=5; i < outLength; i++) { dataRX[i] = Serial.read();//read data from the module. } } //********************************************************************** //!Calculates the checksum and stores it in dataTX buffer void checkSum(uint8_t *dataTX) { for (int i = 0; i < dataTX[0] ; i++) { dataTX[dataTX[0] + 2] += dataTX[i + 2]; } byte(dataTX[dataTX[0] + 2]= - dataTX[dataTX[0] + 2]); } //********************************************************************** //!Calculates the length checksum and sotres it in the buffer. uint8_t lengthCheckSum(uint8_t *dataTX) { dataTX[1] = byte(0x100 - dataTX[0]); } int main (){ setup(); while(1){ loop(); } return (0); }
Here is the USB output using the Arduino IDE serial port terminal:
The next example for this module is the writing/reading of tags.
Warning!!!
Don't write address 0, 3, 7, 11, 15, ... if you are not an advanced user!!! You could leave your tag unaccesable.
Each tag has some special blocks:
Arduino:
/* * RFID 13.56 MHz / NFC Module * * Copyright (C) Libelium Comunicaciones Distribuidas S.L. * http://www.libelium.com * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * a * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see http://www.gnu.org/licenses/. * * Version: 1.0 * Design: David Gascón * Implementation: Ahmad Saad & Javier Solobera */ uint8_t dataRX[35];//Receive buffer. uint8_t dataTX[35];//Transmit buffer. uint8_t _UID[4]; // stores the UID (unique identifier) of a card. uint8_t blockData[] = {0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07, 0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F};//Data to write (16 bytes). uint8_t keyAccess[] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF} ;// stores the key or password. uint8_t address = 0x04;//Address to read. uint8_t ATQ[2];//Answer to request uint8_t state;//state of the process uint8_t aux[16];//Auxiliar buffer. void setup() { //Start serial port 115200 bps: Serial.begin(115200); delay(100); Serial.print("RFID/NFC @ 13.56 MHz module started"); delay(1000); //! It is needed to launch a simple command to sycnchronize getFirmware(); configureSAM(); } void loop() { Serial.print("\n"); Serial.println("Ready to read..."); ///////////////////////////////////////////////////////////// //Get the Card Identifier init(_UID, ATQ); Serial.print("\n"); Serial.print( "The Card NUID : "); print(_UID , 4); ///////////////////////////////////////////////////////////// //Auntenticate a block with his keyAccess state = authenticate(_UID, address, keyAccess); Serial.print("\n"); if ( state == 0) { Serial.println("Authentication block OK"); } else { Serial.println("Authentication failed"); } ///////////////////////////////////////////////////////////// //Write blockData in a address, after authentication. if ( state == 0 ) { state = writeData(address, blockData); Serial.print("\n"); if ( state == 0) { Serial.println("Write block OK"); } else { Serial.println("Write failed"); } ///////////////////////////////////////////////////////////// //Read from address after authentication state = readData(address, aux); Serial.print("\n"); if (state == 0) { Serial.println("Read block OK"); } else { Serial.println("Read failed"); } Serial.print("Data readed : "); print(aux , 16); Serial.print("\n"); } delay(2000); } //********************************************************************** //!The goal of this command is to detect as many targets (maximum MaxTg) // as possible in passive mode. uint8_t init(uint8_t *UID , uint8_t *ATQ) //! Request InListPassive { Serial.flush(); dataTX[0] = 0x04; // Length lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; dataTX[3] = 0x4A; // Code dataTX[4] = 0x01; //MaxTarget dataTX[5] = 0x00; //BaudRate = 106Kbps dataTX[6] = 0x00; // Clear checkSum position checkSum(dataTX); sendTX(dataTX , 7 ,23); for (int i = 17; i < (21) ; i++){ _UID[i-17] = dataRX[i]; UID[i-17] = _UID[i-17]; } ATQ[0] = dataRX[13]; ATQ[1] = dataRX[14]; if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x4B) & (dataRX[11] == 0x01)) { return 0; } else { return 1; } } //********************************************************************** //!A block must be authenticated before read and write operations uint8_t authenticate(uint8_t *UID, uint8_t blockAddress, uint8_t *keyAccess) { dataTX[0] = 0x0F; lengthCheckSum(dataTX); dataTX[2] = 0xD4; dataTX[3] = 0x40; // inDataEchange dataTX[4] = 0x01; //Number of targets dataTX[5] = 0x60; // Authentication code dataTX[6] = blockAddress; for (int i = 0; i < 6 ; i++) { dataTX[i + 7] = keyAccess[i]; } dataTX[13] = UID[0]; dataTX[14] = UID[1]; dataTX[15] = UID[2]; dataTX[16] = UID[3]; dataTX[17] = 0x00; checkSum(dataTX); sendTX(dataTX , 18 ,14); if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x41) & (dataRX[11] == 0x00)) { return 0; } else { return 1; } } //********************************************************************** //!Write 16 bytes in address . uint8_t writeData(uint8_t address, uint8_t *blockData) //!Writing { Serial.print(" "); dataTX[0] = 0x15; lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; dataTX[3] = 0x40; //inDataEchange CODE dataTX[4] = 0x01; //Number of targets dataTX[5] = 0xA0; //Write Command dataTX[6] = address; //Address for (int i = 0; i < 16; i++) { dataTX[i+7] = blockData[i]; } dataTX[23] = 0x00; checkSum(dataTX); sendTX(dataTX , 24 ,14); if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x41) & (dataRX[11] == 0x00)) { return 0; } else { return 1; } } //********************************************************************** //!Read 16 bytes from address . uint8_t readData(uint8_t address, uint8_t *readData) //!Reading { Serial.print(" "); dataTX[0] = 0x05; lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; // Code dataTX[3] = 0x40; // Code dataTX[4] = 0x01; // Number of targets dataTX[5] = 0x30; //ReadCode dataTX[6] = address; //Read address dataTX[7] = 0x00; checkSum(dataTX); sendTX(dataTX , 8, 30); memset(readData, 0x00, 16); if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x41) & (dataRX[11] == 0x00)) { for (int i = 12; i < 28; i++) { readData[i-12] = dataRX[i]; } return 0; } else { return 1; } } //********************************************************************** //!The PN532 sends back the version of the embedded firmware. bool getFirmware(void) //! It is needed to launch a simple command to sycnchronize { Serial.print(" "); memset(dataTX, 0x00, 35); dataTX[0] = 0x02; // Length lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; // CODE dataTX[3] = 0x02; //TFI checkSum(dataTX); //0x2A; //Checksum sendTX(dataTX , 5 , 17); Serial.print("\n"); Serial.print("Your Firmware version is : "); for (int i = 11; i < (15) ; i++){ Serial.print(dataRX[i], HEX); Serial.print(" "); } Serial.print("\n"); } //********************************************************************** //!Print data stored in vectors . void print(uint8_t * _data, uint8_t length) { for (int i = 0; i < length ; i++){ Serial.print(_data[i], HEX); Serial.print(" "); } Serial.print("\n"); } //********************************************************************** //!This command is used to set internal parameters of the PN532, bool configureSAM(void)//! Configure the SAM { Serial.print(" "); dataTX[0] = 0x05; //Length lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; dataTX[3] = 0x14; dataTX[4] = 0x01; //Normal mode dataTX[5] = 0x14; // TimeOUT dataTX[6] = 0x00; // IRQ dataTX[7] = 0x00; // Clean checkSum position checkSum(dataTX); sendTX(dataTX , 8, 13); } //********************************************************************** //!Send data stored in dataTX void sendTX(uint8_t *dataTX, uint8_t length, uint8_t outLength) { Serial.print(char(0x00)); Serial.print(char(0x00)); Serial.print(char(0xFF)); for (int i = 0; i < length; i++) { Serial.print(char(dataTX[i])); } Serial.print(char(0x00)); getACK(); waitResponse(); // 1C - receive response getData(outLength); } //********************************************************************** //!Wait for ACK response and stores it in the dataRX buffer void getACK(void) { delay(5); waitResponse(); for (int i = 0; i < 5 ; i++) { dataRX[i] = Serial.read(); } } //********************************************************************** //!Wait the response of the module void waitResponse(void) { int val = 0xFF; int cont = 0x00; while(val != 0x00) { val = Serial.read(); delay(5); cont ++; } } //********************************************************************** //!Get data from the module void getData(uint8_t outLength) { for (int i=5; i < outLength; i++) { dataRX[i] = Serial.read(); // read data from the module. } } //********************************************************************** //!Calculates the checksum and stores it in dataTX buffer void checkSum(uint8_t *dataTX) { for (int i = 0; i < dataTX[0] ; i++) { dataTX[dataTX[0] + 2] += dataTX[i + 2]; } byte(dataTX[dataTX[0] + 2]= - dataTX[dataTX[0] + 2]); } //********************************************************************** //!Calculates the length checksum and sotres it in the buffer. uint8_t lengthCheckSum(uint8_t *dataTX) { dataTX[1] = byte(0x100 - dataTX[0]); }
Raspberry Pi:
/* * RFID 13.56 MHz / NFC Module * * Copyright (C) Libelium Comunicaciones Distribuidas S.L. * http://www.libelium.com * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * a * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see http://www.gnu.org/licenses/. * * Version: 1.0 * Design: David Gascón * Implementation: Ahmad Saad & Javier Solobera */ #include "arduPi.h" uint8_t init(uint8_t *UID , uint8_t *ATQ); uint8_t authenticate(uint8_t *UID, uint8_t blockAddress, uint8_t *keyAccess); uint8_t writeData(uint8_t address, uint8_t *blockData); uint8_t readData(uint8_t address, uint8_t *readData); bool getFirmware(void); void print(uint8_t * _data, uint8_t length); bool configureSAM(void); void sendTX(uint8_t *dataTX, uint8_t length, uint8_t outLength); void getACK(void); void waitResponse(void); void getData(uint8_t outLength); void checkSum(uint8_t *dataTX); uint8_t lengthCheckSum(uint8_t *dataTX); uint8_t dataRX[35];//Receive buffer. uint8_t dataTX[35];//Transmit buffer. uint8_t _UID[4]; // stores the UID (unique identifier) of a card. uint8_t blockData[] = {0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07, 0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F};//Data to write (16 bytes). uint8_t keyAccess[] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF} ;// stores the key or password. uint8_t address = 0x04;//Address to read. uint8_t ATQ[2];//Answer to request uint8_t state;//state of the process uint8_t aux[16];//Auxiliar buffer. void setup() { //Start serial port 115200 bps: Serial.begin(115200); delay(100); printf("RFID/NFC @ 13.56 MHz module started\n"); delay(1000); //! It is needed to launch a simple command to sycnchronize getFirmware(); configureSAM(); } void loop() { printf("Ready to read...\n"); ///////////////////////////////////////////////////////////// //Get the Card Identifier init(_UID, ATQ); Serial.print( "The Card NUID : "); print(_UID , 4); ///////////////////////////////////////////////////////////// //Auntenticate a block with his keyAccess state = authenticate(_UID, address, keyAccess); printf("\n"); if ( state == 0) { printf("Authentication block OK\n"); } else { printf("Authentication failed\n"); } ///////////////////////////////////////////////////////////// //Write blockData in a address, after authentication. if ( state == 0 ) { state = writeData(address, blockData); Serial.print("\n"); if ( state == 0) { printf("Write block OK\n"); } else { printf("Write failed\n"); } ///////////////////////////////////////////////////////////// //Read from address after authentication state = readData(address, aux); printf("\n"); if (state == 0) { printf("Read block OK\n"); } else { printf("Read failed\n"); } printf("Data read: "); print(aux , 16); printf("\n"); } delay(2000); } //********************************************************************** //!The goal of this command is to detect as many targets (maximum MaxTg) // as possible in passive mode. uint8_t init(uint8_t *UID , uint8_t *ATQ) //! Request InListPassive { Serial.flush(); dataTX[0] = 0x04; // Length lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; dataTX[3] = 0x4A; // Code dataTX[4] = 0x01; //MaxTarget dataTX[5] = 0x00; //BaudRate = 106Kbps dataTX[6] = 0x00; // Clear checkSum position checkSum(dataTX); sendTX(dataTX , 7 ,23); for (int i = 17; i < (21) ; i++){ _UID[i-17] = dataRX[i]; UID[i-17] = _UID[i-17]; } ATQ[0] = dataRX[13]; ATQ[1] = dataRX[14]; if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x4B) & (dataRX[11] == 0x01)) { return 0; } else { return 1; } } //********************************************************************** //!A block must be authenticated before read and write operations uint8_t authenticate(uint8_t *UID, uint8_t blockAddress, uint8_t *keyAccess) { dataTX[0] = 0x0F; lengthCheckSum(dataTX); dataTX[2] = 0xD4; dataTX[3] = 0x40; // inDataEchange dataTX[4] = 0x01; //Number of targets dataTX[5] = 0x60; // Authentication code dataTX[6] = blockAddress; for (int i = 0; i < 6 ; i++) { dataTX[i + 7] = keyAccess[i]; } dataTX[13] = UID[0]; dataTX[14] = UID[1]; dataTX[15] = UID[2]; dataTX[16] = UID[3]; dataTX[17] = 0x00; checkSum(dataTX); sendTX(dataTX , 18 ,14); if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x41) & (dataRX[11] == 0x00)) { return 0; } else { return 1; } } //********************************************************************** //!Write 16 bytes in address . uint8_t writeData(uint8_t address, uint8_t *blockData) //!Writing { Serial.print(" "); dataTX[0] = 0x15; lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; dataTX[3] = 0x40; //inDataEchange CODE dataTX[4] = 0x01; //Number of targets dataTX[5] = 0xA0; //Write Command dataTX[6] = address; //Address for (int i = 0; i < 16; i++) { dataTX[i+7] = blockData[i]; } dataTX[23] = 0x00; checkSum(dataTX); sendTX(dataTX , 24 ,14); if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x41) & (dataRX[11] == 0x00)) { return 0; } else { return 1; } } //********************************************************************** //!Read 16 bytes from address . uint8_t readData(uint8_t address, uint8_t *readData) //!Reading { Serial.print(" "); dataTX[0] = 0x05; lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; // Code dataTX[3] = 0x40; // Code dataTX[4] = 0x01; // Number of targets dataTX[5] = 0x30; //ReadCode dataTX[6] = address; //Read address dataTX[7] = 0x00; checkSum(dataTX); sendTX(dataTX , 8, 30); memset(readData, 0x00, 16); if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x41) & (dataRX[11] == 0x00)) { for (int i = 12; i < 28; i++) { readData[i-12] = dataRX[i]; } return 0; } else { return 1; } } //********************************************************************** //!The PN532 sends back the version of the embedded firmware. bool getFirmware(void) //! It is needed to launch a simple command to sycnchronize { Serial.print(" "); memset(dataTX, 0x00, 35); dataTX[0] = 0x02; // Length lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; // CODE dataTX[3] = 0x02; //TFI checkSum(dataTX); //0x2A; //Checksum sendTX(dataTX , 5 , 17); printf("\n"); printf("Your Firmware version is : "); for (int i = 11; i < (15) ; i++){ printf("%x",dataRX[i]); printf(" "); } printf("\n"); } //********************************************************************** //!Print data stored in vectors . void print(uint8_t * _data, uint8_t length) { for (int i = 0; i < length ; i++){ printf("%x",_data[i]); printf(" "); } printf("\n"); } //********************************************************************** //!This command is used to set internal parameters of the PN532, bool configureSAM(void)//! Configure the SAM { Serial.print(" "); dataTX[0] = 0x05; //Length lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; dataTX[3] = 0x14; dataTX[4] = 0x01; //Normal mode dataTX[5] = 0x14; // TimeOUT dataTX[6] = 0x00; // IRQ dataTX[7] = 0x00; // Clean checkSum position checkSum(dataTX); sendTX(dataTX , 8, 13); } //********************************************************************** //!Send data stored in dataTX void sendTX(uint8_t *dataTX, uint8_t length, uint8_t outLength) { Serial.print(0x00, BYTE); Serial.print(0x00, BYTE); Serial.print(0xFF, BYTE); for (int i = 0; i < length; i++) { Serial.print(dataTX[i], BYTE); } Serial.print(0x00, BYTE); getACK(); waitResponse(); // 1C - receive response getData(outLength); } //********************************************************************** //!Wait for ACK response and stores it in the dataRX buffer void getACK(void) { delay(5); waitResponse(); for (int i = 0; i < 5 ; i++) { dataRX[i] = Serial.read(); } } //********************************************************************** //!Wait the response of the module void waitResponse(void) { int val = 0xFF; int cont = 0x00; while(val != 0x00) { val = Serial.read(); delay(5); cont ++; } } //********************************************************************** //!Get data from the module void getData(uint8_t outLength) { for (int i=5; i < outLength; i++) { dataRX[i] = Serial.read(); // read data from the module. } } //********************************************************************** //!Calculates the checksum and stores it in dataTX buffer void checkSum(uint8_t *dataTX) { for (int i = 0; i < dataTX[0] ; i++) { dataTX[dataTX[0] + 2] += dataTX[i + 2]; } byte(dataTX[dataTX[0] + 2]= - dataTX[dataTX[0] + 2]); } //********************************************************************** //!Calculates the length checksum and sotres it in the buffer. uint8_t lengthCheckSum(uint8_t *dataTX) { dataTX[1] = byte(0x100 - dataTX[0]); } int main (){ setup(); while(1){ loop(); } return (0); }
Here is the USB output using the Arduino IDE serial port terminal.
This example changes the keys and access conditions in a sector and checks the block can be accessed with the new conditions.
Warning!!!
Arduino:
/* * RFID 13.56 MHz / NFC Module * * Copyright (C) Libelium Comunicaciones Distribuidas S.L. * http://www.libelium.com * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * a * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see http://www.gnu.org/licenses/. * * Version: 1.0 * Design: David Gascón * Implementation: Ahmad Saad & Javier Solobera */ uint8_t dataRX[35];//Receive buffer. uint8_t dataTX[35];//Transmit buffer. //stores the status of the executed command: short state; //auxiliar buffer: unsigned char aux[16]; //stores the UID (unique identifier) of a card: unsigned char _CardID[4]; //stores the key or password: unsigned char keyOld[]= {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};// Old key access. unsigned char keyA[]= {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xF1};//NEW KEY ACCESS. unsigned char keyB[]= {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};//Secundary KEY ACCESS //only edit config if strong knowledge about the RFID/NFC module unsigned char config[] = {0xFF, 0x07, 0x80, 0x69}; int address = 3; void setup() { // start serial port 115200 bps: Serial.begin(115200); delay(100); Serial.print("RFID/NFC @ 13.56 MHz module started"); delay(1000); //! It is needed to launch a simple command to sycnchronize getFirmware(); configureSAM(); } void loop() { Serial.print("\r\n++++++++++++++++++++++++++++++++++++"); // **** init the RFID/NFC reader state = init(_CardID, aux); if (aux[0] == aux[1]) {// if so, there is no card on the EM field Serial.print("\r\nRequest error - no card found"); } else { // a card was found Serial.print("\r\nRequest | Answer: "); print(aux, 2); //show the ATQ Serial.print("\r\nAnticollSelect: "); Serial.print(state, HEX);//show the status of the executed init command(should be 0) Serial.print(" | Answer: "); print(_CardID, 4); //show the UID (Unique IDentifier) of the read card (4 bytes) //Write new key in block then authenticate this address and get the new value state = setKeys(_CardID, keyOld, keyA, keyB, config, aux, address); Serial.print("\r\n**write new key, state: "); Serial.print(state, HEX); if (state == 0) { Serial.print(" --> correct key change "); } else { Serial.print(" --> ** ERROR: keys not changed ** "); } // ###### check block 3/7/11/15 (the keys will return 0s) // **** authenticate again, now with the new key A state = authenticate(_CardID, address , keyA); Serial.print("\r\n**Authentication block: "); Serial.print(state, HEX); if (state == 0) { Serial.print(" --> correct authentication "); }else { Serial.print(" --> ** ERROR: bad authentication ** "); } } delay(5000); // wait 10 seconds in each loop } //********************************************************************** //!The goal of this command is to detect as many targets (maximum MaxTg) // as possible in passive mode. uint8_t init(uint8_t *CardID , uint8_t *ATQ) //! Request InListPassive { Serial.flush(); dataTX[0] = 0x04; // Length lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; dataTX[3] = 0x4A; // Code dataTX[4] = 0x01; //MaxTarget dataTX[5] = 0x00; //BaudRate = 106Kbps dataTX[6] = 0x00; // Clear checkSum position checkSum(dataTX); sendTX(dataTX , 7 ,23); for (int i = 17; i < (21) ; i++){ _CardID[i-17] = dataRX[i]; CardID[i-17] = _CardID[i-17]; } ATQ[0] = dataRX[13]; ATQ[1] = dataRX[14]; if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x4B) & (dataRX[11] == 0x01)) { return 0; } else { return 1; } } //********************************************************************** //!A block must be authenticated before read and write operations uint8_t authenticate(uint8_t *CardID, uint8_t blockAddress, uint8_t *keyAccess) { dataTX[0] = 0x0F; lengthCheckSum(dataTX); dataTX[2] = 0xD4; dataTX[3] = 0x40; // inDataEchange dataTX[4] = 0x01; //Number of targets dataTX[5] = 0x60; // Authentication code dataTX[6] = blockAddress; for (int i = 0; i < 6 ; i++) { dataTX[i + 7] = keyAccess[i]; } dataTX[13] = CardID[0]; dataTX[14] = CardID[1]; dataTX[15] = CardID[2]; dataTX[16] = CardID[3]; dataTX[17] = 0x00; checkSum(dataTX); sendTX(dataTX , 18 ,14); if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x41) & (dataRX[11] == 0x00)) { return 0; } else { return 1; } } //********************************************************************** //!Write 16 bytes in address . uint8_t writeData(uint8_t address, uint8_t *blockData) //!Writing { Serial.print(" "); dataTX[0] = 0x15; lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; dataTX[3] = 0x40; //inDataEchange CODE dataTX[4] = 0x01; //Number of targets dataTX[5] = 0xA0; //Write Command dataTX[6] = address; //Address for (int i = 0; i < 16; i++) { dataTX[i+7] = blockData[i]; } dataTX[23] = 0x00; checkSum(dataTX); sendTX(dataTX , 24 ,14); if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x41) & (dataRX[11] == 0x00)) { return 0; } else { return 1; } } //********************************************************************** //!Read 16 bytes from address . uint8_t readData(uint8_t address, uint8_t *readData) //!Reading { Serial.print(" "); dataTX[0] = 0x05; lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; // Code dataTX[3] = 0x40; // Code dataTX[4] = 0x01; // Number of targets dataTX[5] = 0x30; //ReadCode dataTX[6] = address; //Read address dataTX[7] = 0x00; checkSum(dataTX); sendTX(dataTX , 8, 30); memset(readData, 0x00, 16); if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x41) & (dataRX[11] == 0x00)) { for (int i = 12; i < 28; i++) { readData[i-12] = dataRX[i]; } return 0; } else { return 1; } } //********************************************************************** //!The PN532 sends back the version of the embedded firmware. bool getFirmware(void) //! It is needed to launch a simple command to sycnchronize { Serial.print(" "); memset(dataTX, 0x00, 35); dataTX[0] = 0x02; // Length lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; // CODE dataTX[3] = 0x02; //TFI checkSum(dataTX); //0x2A; //Checksum sendTX(dataTX , 5 , 17); Serial.print("\n"); Serial.print("Your Firmware version is : "); for (int i = 11; i < (15) ; i++){ Serial.print(dataRX[i], HEX); Serial.print(" "); } Serial.print("\n"); } //********************************************************************** //!Print data stored in vectors . void print(uint8_t * _data, uint8_t length) { for (int i = 0; i < length ; i++){ Serial.print(_data[i], HEX); Serial.print(" "); } Serial.print("\n"); } //********************************************************************** //!This command is used to set internal parameters of the PN532, bool configureSAM(void)//! Configure the SAM { Serial.print(" "); dataTX[0] = 0x05; //Length lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; dataTX[3] = 0x14; dataTX[4] = 0x01; //Normal mode dataTX[5] = 0x14; // TimeOUT dataTX[6] = 0x00; // IRQ dataTX[7] = 0x00; // Clean checkSum position checkSum(dataTX); sendTX(dataTX , 8, 13); } //********************************************************************** //!Send data stored in dataTX void sendTX(uint8_t *dataTX, uint8_t length, uint8_t outLength) { Serial.print(char(0x00)); Serial.print(char(0x00)); Serial.print(char(0xFF)); for (int i = 0; i < length; i++) { Serial.print(char(dataTX[i])); } Serial.print(char(0x00)); getACK(); waitResponse(); // 1C - receive response getData(outLength); } //********************************************************************** //!Wait for ACK response and stores it in the dataRX buffer void getACK(void) { delay(5); waitResponse(); for (int i = 0; i < 5 ; i++) { dataRX[i] = Serial.read(); } } //********************************************************************** //!Wait the response of the module void waitResponse(void) { int val = 0xFF; int cont = 0x00; while(val != 0x00) { val = Serial.read(); delay(5); cont ++; } } //********************************************************************** //!Get data from the module void getData(uint8_t outLength) { for (int i=5; i < outLength; i++) { dataRX[i] = Serial.read(); // read data from the module. } } //********************************************************************** //!Calculates the checksum and stores it in dataTX buffer void checkSum(uint8_t *dataTX) { for (int i = 0; i < dataTX[0] ; i++) { dataTX[dataTX[0] + 2] += dataTX[i + 2]; } byte(dataTX[dataTX[0] + 2]= - dataTX[dataTX[0] + 2]); } //********************************************************************** //!Calculates the length checksum and sotres it in the buffer. uint8_t lengthCheckSum(uint8_t *dataTX) { dataTX[1] = byte(0x100 - dataTX[0]); } //********************************************************************** //Changes both keys and access conditions to one card's sector uint8_t setKeys(uint8_t *CardID,uint8_t *keyOld,uint8_t *keyA,uint8_t *keyB,uint8_t *config,uint8_t *data,uint8_t add) { uint8_t state = 1; if (((add+1) % 4) == 0){ state = authenticate(CardID , add, keyOld); if (state == 0) { for (int i = 0; i < 6; i++) { data[i] = keyA[i]; data[i+ 10] = keyB[i]; } for (int i = 0; i < 4 ; i++) { data[i + 6] = config[i]; } state = writeData(add, data); } } return state; }
Raspberry Pi:
/* * RFID 13.56 MHz / NFC Module * * Copyright (C) Libelium Comunicaciones Distribuidas S.L. * http://www.libelium.com * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * a * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see http://www.gnu.org/licenses/. * * Version: 1.0 * Design: David Gascón * Implementation: Ahmad Saad & Javier Solobera */ #include "arduPi.h" uint8_t init(uint8_t *UID , uint8_t *ATQ); uint8_t authenticate(uint8_t *UID, uint8_t blockAddress, uint8_t *keyAccess); uint8_t writeData(uint8_t address, uint8_t *blockData); uint8_t readData(uint8_t address, uint8_t *readData); bool getFirmware(void); void print(uint8_t * _data, uint8_t length); bool configureSAM(void); void sendTX(uint8_t *dataTX, uint8_t length, uint8_t outLength); void getACK(void); void waitResponse(void); void getData(uint8_t outLength); void checkSum(uint8_t *dataTX); uint8_t lengthCheckSum(uint8_t *dataTX); uint8_t setKeys(uint8_t *CardID,uint8_t *keyOld,uint8_t *keyA,uint8_t *keyB,uint8_t *config,uint8_t *data,uint8_t add); uint8_t dataRX[35];//Receive buffer. uint8_t dataTX[35];//Transmit buffer. //stores the status of the executed command: short state; //auxiliar buffer: unsigned char aux[16]; //stores the UID (unique identifier) of a card: unsigned char _CardID[4]; //stores the key or password: unsigned char keyOld[]= {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};// Old key access. unsigned char keyA[]= {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xF1};//NEW KEY ACCESS. unsigned char keyB[]= {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};//Secundary KEY ACCESS //only edit config if strong knowledge about the RFID/NFC module unsigned char config[] = {0xFF, 0x07, 0x80, 0x69}; int address = 3; void setup() { // start serial port 115200 bps: Serial.begin(115200); delay(100); printf("RFID/NFC @ 13.56 MHz module started\n"); delay(1000); //! It is needed to launch a simple command to sycnchronize getFirmware(); configureSAM(); } void loop() { printf("\n++++++++++++++++++++++++++++++++++++\n"); // **** init the RFID/NFC reader state = init(_CardID, aux); if (aux[0] == aux[1]) {// if so, there is no card on the EM field printf("Request error - no card found\n"); } else { // a card was found printf("Request | Answer: \n"); print(aux, 2); //show the ATQ printf("AnticollSelect: \n"); printf("%x",state);//show the status of the executed init command(should be 0) printf(" | Answer: "); print(_CardID, 4); //show the UID (Unique IDentifier) of the read card (4 bytes) //Write new key in block then authenticate this address and get the new value state = setKeys(_CardID, keyOld, keyA, keyB, config, aux, address); printf("\n**write new key, state: "); printf("%x",state); if (state == 0) { printf(" --> correct key change "); } else { printf(" --> ** ERROR: keys not changed ** "); } // ###### check block 3/7/11/15 (the keys will return 0s) // **** authenticate again, now with the new key A state = authenticate(_CardID, address , keyA); printf("\n**Authentication block: "); printf("%x",state); if (state == 0) { printf(" --> correct authentication "); }else { printf(" --> ** ERROR: bad authentication ** "); } } delay(5000); // wait 10 seconds in each loop } //********************************************************************** //!The goal of this command is to detect as many targets (maximum MaxTg) // as possible in passive mode. uint8_t init(uint8_t *CardID , uint8_t *ATQ) //! Request InListPassive { Serial.flush(); dataTX[0] = 0x04; // Length lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; dataTX[3] = 0x4A; // Code dataTX[4] = 0x01; //MaxTarget dataTX[5] = 0x00; //BaudRate = 106Kbps dataTX[6] = 0x00; // Clear checkSum position checkSum(dataTX); sendTX(dataTX , 7 ,23); for (int i = 17; i < (21) ; i++){ _CardID[i-17] = dataRX[i]; CardID[i-17] = _CardID[i-17]; } ATQ[0] = dataRX[13]; ATQ[1] = dataRX[14]; if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x4B) & (dataRX[11] == 0x01)) { return 0; } else { return 1; } } //********************************************************************** //!A block must be authenticated before read and write operations uint8_t authenticate(uint8_t *CardID, uint8_t blockAddress, uint8_t *keyAccess) { dataTX[0] = 0x0F; lengthCheckSum(dataTX); dataTX[2] = 0xD4; dataTX[3] = 0x40; // inDataEchange dataTX[4] = 0x01; //Number of targets dataTX[5] = 0x60; // Authentication code dataTX[6] = blockAddress; for (int i = 0; i < 6 ; i++) { dataTX[i + 7] = keyAccess[i]; } dataTX[13] = CardID[0]; dataTX[14] = CardID[1]; dataTX[15] = CardID[2]; dataTX[16] = CardID[3]; dataTX[17] = 0x00; checkSum(dataTX); sendTX(dataTX , 18 ,14); if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x41) & (dataRX[11] == 0x00)) { return 0; } else { return 1; } } //********************************************************************** //!Write 16 bytes in address . uint8_t writeData(uint8_t address, uint8_t *blockData) //!Writing { Serial.print(" "); dataTX[0] = 0x15; lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; dataTX[3] = 0x40; //inDataEchange CODE dataTX[4] = 0x01; //Number of targets dataTX[5] = 0xA0; //Write Command dataTX[6] = address; //Address for (int i = 0; i < 16; i++) { dataTX[i+7] = blockData[i]; } dataTX[23] = 0x00; checkSum(dataTX); sendTX(dataTX , 24 ,14); if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x41) & (dataRX[11] == 0x00)) { return 0; } else { return 1; } } //********************************************************************** //!Read 16 bytes from address . uint8_t readData(uint8_t address, uint8_t *readData) //!Reading { Serial.print(" "); dataTX[0] = 0x05; lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; // Code dataTX[3] = 0x40; // Code dataTX[4] = 0x01; // Number of targets dataTX[5] = 0x30; //ReadCode dataTX[6] = address; //Read address dataTX[7] = 0x00; checkSum(dataTX); sendTX(dataTX , 8, 30); memset(readData, 0x00, 16); if ((dataRX[9]== 0xD5) & (dataRX[10] == 0x41) & (dataRX[11] == 0x00)) { for (int i = 12; i < 28; i++) { readData[i-12] = dataRX[i]; } return 0; } else { return 1; } } //********************************************************************** //!The PN532 sends back the version of the embedded firmware. bool getFirmware(void) //! It is needed to launch a simple command to sycnchronize { Serial.print(" "); memset(dataTX, 0x00, 35); dataTX[0] = 0x02; // Length lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; // CODE dataTX[3] = 0x02; //TFI checkSum(dataTX); //0x2A; //Checksum sendTX(dataTX , 5 , 17); printf("\n"); printf("Your Firmware version is : "); for (int i = 11; i < (15) ; i++){ printf("%x",dataRX[i]); printf(" "); } printf("\n"); } //********************************************************************** //!Print data stored in vectors . void print(uint8_t * _data, uint8_t length) { for (int i = 0; i < length ; i++){ printf("%x",_data[i]); printf(" "); } printf("\n"); } //********************************************************************** //!This command is used to set internal parameters of the PN532, bool configureSAM(void)//! Configure the SAM { Serial.print(" "); dataTX[0] = 0x05; //Length lengthCheckSum(dataTX); // Length Checksum dataTX[2] = 0xD4; dataTX[3] = 0x14; dataTX[4] = 0x01; //Normal mode dataTX[5] = 0x14; // TimeOUT dataTX[6] = 0x00; // IRQ dataTX[7] = 0x00; // Clean checkSum position checkSum(dataTX); sendTX(dataTX , 8, 13); } //********************************************************************** //!Send data stored in dataTX void sendTX(uint8_t *dataTX, uint8_t length, uint8_t outLength) { Serial.print(0x00, BYTE); Serial.print(0x00, BYTE); Serial.print(0xFF, BYTE); for (int i = 0; i < length; i++) { Serial.print(dataTX[i], BYTE); } Serial.print(0x00, BYTE); getACK(); waitResponse(); // 1C - receive response getData(outLength); } //********************************************************************** //!Wait for ACK response and stores it in the dataRX buffer void getACK(void) { delay(5); waitResponse(); for (int i = 0; i < 5 ; i++) { dataRX[i] = Serial.read(); } } //********************************************************************** //!Wait the response of the module void waitResponse(void) { int val = 0xFF; int cont = 0x00; while(val != 0x00) { val = Serial.read(); delay(5); cont ++; } } //********************************************************************** //!Get data from the module void getData(uint8_t outLength) { for (int i=5; i < outLength; i++) { dataRX[i] = Serial.read(); // read data from the module. } } //********************************************************************** //!Calculates the checksum and stores it in dataTX buffer void checkSum(uint8_t *dataTX) { for (int i = 0; i < dataTX[0] ; i++) { dataTX[dataTX[0] + 2] += dataTX[i + 2]; } byte(dataTX[dataTX[0] + 2]= - dataTX[dataTX[0] + 2]); } //********************************************************************** //!Calculates the length checksum and sotres it in the buffer. uint8_t lengthCheckSum(uint8_t *dataTX) { dataTX[1] = byte(0x100 - dataTX[0]); } //********************************************************************** //Changes both keys and access conditions to one card's sector uint8_t setKeys(uint8_t *CardID,uint8_t *keyOld,uint8_t *keyA,uint8_t *keyB,uint8_t *config,uint8_t *data,uint8_t add) { uint8_t state = 1; if (((add+1) % 4) == 0){ state = authenticate(CardID , add, keyOld); if (state == 0) { for (int i = 0; i < 6; i++) { data[i] = keyA[i]; data[i+ 10] = keyB[i]; } for (int i = 0; i < 4 ; i++) { data[i + 6] = config[i]; } state = writeData(add, data); } } return state; } int main (){ setup(); while(1){ loop(); } return (0); }
RFID 13.56 MHz / NFC Module for Arduino can be connected to Arduino using a XBee shield and will communicate it using the Arduino serial port (UART).).
You can download our Fritzing libraries from this area.
If you are interested in Internet of Things (IoT) or M2M projects check our open source sensor platform Waspmote which counts with more than 100 sensors available to use 'off the shelf', a complete API with hundreds of ready to use codes and a low consumption mode of just 0.7µA to ensure years of battery life.
Know more at:
Get the Starter Kits at: